二分查找模版
二分查找模版
模版
第⼀个,最基本的⼆分查找算法:
因为我们初始化 right = nums.length - 1
所以决定了我们的「搜索区间」是 [left, right]
所以决定了 while (left <= right)
同时也决定了 left = mid+1 和 right = mid-1
因为我们只需找到⼀个 target 的索引即可
所以当 nums[mid] == target 时可以⽴即返回
1 | int binary_search(int[] nums, int target) { |
第⼆个,寻找左侧边界的⼆分查找:
因为我们初始化 right = nums.length
所以决定了我们的「搜索区间」是 [left, right)
所以决定了 while (left < right)
同时也决定了 left = mid + 1 和 right = mid
因为我们需找到 target 的最左侧索引
所以当 nums[mid] == target 时不要⽴即返回
⽽要收紧右侧边界以锁定左侧边界
1 | int left_bound(int[] nums, int target) { |
第三个,寻找右侧边界的⼆分查找:
因为我们初始化 right = nums.length
所以决定了我们的「搜索区间」是 [left, right)
所以决定了 while (left < right)
同时也决定了 left = mid + 1 和 right = mid
因为我们需找到 target 的最右侧索引
所以当 nums[mid] == target 时不要⽴即返回
⽽要收紧左侧边界以锁定右侧边界
⼜因为收紧左侧边界时必须 left = mid + 1
所以最后⽆论返回 left 还是 right,必须减⼀
1 | int right_bound(int[] nums, int target) { |
注意
1、分析⼆分查找代码时,不要出现 else,全部展开成 else if ⽅便理解。
2、注意「搜索区间」和 while 的终⽌条件,如果存在漏掉的元素,记得在
最后检查。
3、如需定义左闭右开的「搜索区间」搜索左右边界,只要在 nums[mid] ==
target 时做修改即可,搜索右侧时需要减⼀。
4、如果将「搜索区间」全都统⼀成两端都闭,好记,只要稍改 nums[mid]
== target 条件处的代码和返回的逻辑即可,